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Abstract. In the initial stage of the bottom-up picture of thermalization in heavy-ion collisions, the gluon
distribution is highly anisotropic which can give rise to plasma instability. This has not been taken into
account in our original paper (Phys. Lett. B 632, 257 (2006) hep-ph/0505164). It is shown that in the
presence of instability there are scaling solutions, which depend on one parameter, that match smoothly
onto the late stage of bottom-up when thermalization takes place.

PACS. 25.75.-q Relativistic heavy-ion collisions – 12.38.Mh Quark-gluon plasma – 52.27.Ny Relativistic
plasmas – 52.35.Qz Microinstabilities (ion-acoustic, two-stream, loss-cone, beam-plasma, drift, ion- or
electron-cyclotron, etc.)

1 The original bottom-up picture

In the McLerran-Venugopalan model of the color glass
condensate [1], small-x gluons with transverse momentum
below a certain saturation scale Qs are at their maximum
density. When applied to a nucleus-nucleus collision at
impact parameter b, this scale is given by [2]
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and its value is Qs ∼ 1GeV at the relativistic heavy-ion
collider (RHIC). Here RA is the nuclear radius, ρ is the
nuclear number density, Nc is the number of color, α is the
coupling and Gp is the gluon distribution of a proton. In
a nuclear collision these gluons have a typical momentum
of Qs and are freed at a time around 1/Qs after the initial
impact. In the bottom-up picture, which is based on the
observation that inelastic processes are no less important
than elastic processes for thermalization [3], equilibration
is driven by these hard gluons and it goes through three
distinct stages [4]. They are a) the early times 1 < Qsτ <
α−3/2, b) the intermediate times α−3/2 < Qsτ < α−5/2

and c) the final stage α−5/2 < Qsτ < α−13/5.

1.1 a) 1 < Qsτ < α−3/2

At the early times hard gluons dominate and because of
the longitudinal expansion the density goes down like

Nh ∼
Q3

s

α(Qsτ)
. (2)
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(corresponding author).

In the central collision region most of the gluons have
small longitudinal momentum, pz ¿ 1, otherwise they
would have wandered out of the region. But this momen-
tum cannot be zero either because of broadening due to
multiple scattering. Effectively, the pz goes through a ran-
dom walk in momentum space due to the random kicks
by other hard gluons so

p2
z ∼ Ncol m

2
D ∼

αNh

pz
, (3)

where Ncol is the number of collisions a hard gluon typi-
cally has encountered at the time τ and m2

D is the screen-
ing mass square

m2
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which effectively acts as the variance for each kick due to
the much more frequent small-angle collisions. pz comes
out to be

pz ∼ (αNh)
1/3
∼

Qs

(Qsτ)1/3
. (5)

Soft gluons with momentum ks are produced during these
times via the Bethe-Heitler formula [5] to give the para-
metric form for Ns

Ns ∼ τ
∂Ns

∂τ
∼

Q3
s

α(Qsτ)4/3
. (6)

Once produced, random scattering by other gluons ener-
gizes these soft gluons so that their momenta settle around
ks ∼ pz. Therefore the soft-gluon distribution becomes

fs ∼
Ns

k3
s

∼
1

α(Qsτ)1/3
. (7)
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1.2 b) α−3/2 < Qsτ < α−5/2

In the intermediate times hard gluons still dominate in
numbers but now fh < 1. This changes the scattering rate
with the hard gluons so

k2
s ∼ Ncol m

2
D ∼ αQ2

s (8)

is now a constant. Assuming that the screening is mainly
due to the soft gluons

m2
D ∼

αNs

ks
À

αNh

Qs
, (9)

one can find self-consistently that

Ns ∼
α1/4Q3

s

(Qsτ)1/2
. (10)

1.3 c) α−5/2 < Qsτ < α−13/5

In the final stage most gluons are soft Ns À Nh. The
remaining hard gluons will scatter with the soft gluons
and lose energy via successive gluon splitting. Whereas
in the previous stages gluon production via the Bethe-
Heitler formula is unaffected by multiple scattering, this
is no longer true as the branching gluon momenta now
fall within the range of the Landau-Pomeranchuk-Migdal
suppression [6]. Specifically gluon emission with momen-
tum larger than kLPM = m2

D/Nscattσ is suppressed [7].
Nscatt is the number density of the particles that is re-
sponsible for most of the scatterings. In this case the for-
mation time of the branching gluon is tf ∼ kbr/k

2
t where

kt is the transverse momentum picked up by the branch-
ing gluon through the random kicks by the soft gluons. It
can be estimated as momentum broadening as before but
the number of collisions is now restricted by the formation
time tf and the mean free path λ, hence

k2
t ∼ m2

D tf/λ. (11)

The rate of branching is roughly related to the formation
time via 1/tbr ∼ α/tf . Equating tbr with τ and requiring
that the soft gluon now be in a thermal bath Ns ∼ T 3,
one finds the branching momentum to be

kbr ∼ α4T 3τ2. (12)

Lastly, equating the energy flow from the hard gluons to
the soft thermal bath, the temperature is determined to
have the linear time dependence

T ∼ α3Q2
sτ. (13)

We will see later on how some of these parametric depen-
dences are recovered even after instability is included into
the consideration.

2 The instability

As mentioned previously, early on in the collision only
small-x gluons can remain in the central region and they

have typical transverse momentum of the order ofQs. This
describes a picture of gluons with highly anisotropic initial
momentum distribution. In such a situation as pointed out
a long time ago [8] and more recently within the context
of the bottom-up picture [9], it would give rise to plasma
instability. The instability occurs because the dispersion
relation for the soft gluons gives a negative value for the
screening mass square:

m2
D ∼ −

αNh

Qs
(14)

when the momentum distribution is highly
anisotropic [10]. Modes with momentum k < mD

are unstable. For recent reviews on the topic of instability
in the context of heavy-ion collisions, one can read
for example [11]. Although the growth is exponential
in nature1 and should be very fast on the time scale
of τ ∼ 1/mD or Qsτ ∼ 1, it is difficult for it to lead
directly to equilibration because, first, the instability only
produces soft particles and, second, Arnold and Lenaghan
(the first paper of [10]) showed that equilibration cannot
occur before Qsτ ∼ α−7/2 which is much later than
Qsτ ∼ 1 for small αs.

Instability creates many soft gluons as a result. There
are two possibilities for the system to evolve further:

i) When the soft particles are saturated at fs ∼ 1/α fur-
ther production via the instability will result in gluons
with k ∼ mD being transferred to higher momenta.

ii) Or the instability will be completely eliminated by the
soft gluons at saturation.

In either case, in the same spirit of the bottom-up picture,
it is natural to look for a scaling solution which connects
the end of the exponential growth due to the instability
to final equilibration.

3 A possible scaling solution

The solution(s) that we propose of course still has to start
with the longitudinally expanding initial hard gluons

Nh ∼
Q3

s

α(Qsτ)
. (15)

For gluons produced sometimes after the beginning but
before τ , 1/Qs < τ0 < τ , these have [14]

Ns(τ, τ0) ∼
Q3

s

α(Qsτ)(Qsτ0)1/3−δ
,

ks(τ0) ∼
Qs

(Qsτ0)1/3−2δ/5
,

αfs(τ, τ0) ∼
(Qsτ0)

1/3+δ/5

(Qsτ)2/3+2δ/5
, (16)

1 In [12] it was shown that at late times the growth changed
character from an exponential to a linear one and in [13] for
an longitudinally expanding plasma, the exponent was shown
to be ∼

√
τ as one would expect from the form of eq. (4).
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where Ns(τ, τ0) is the number density of particle produced
at time τ0 but measured at τ .

For gluons produced at time τ , one can write down a
family of δ-parameter–dependent scaling solutions [14]

Ns ∼
Q3

s

α(Qsτ)4/3−δ
, ks ∼

Qs

(Qsτ)1/3−2δ/5
,

αfs ∼
1

(Qsτ)1/3+δ/5
, mD ∼

Qs

(Qsτ)1/2−3δ/10
, (17)

where δ ≥ 0. At δ = 0 they coincide with the initial para-
metric form of the original bottom-up picture described
in the first section. The solutions obey

m2
D ∼

αNs

ks
, (18)
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2, (19)
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∼

α2

k2
s
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Here mD at τ is determined by soft gluons produced via
the Bethe-Heitler formula in eq. (19). Multiple scattering
ensures that these gluons gain momentum until they reach
a value around ks given by eq. (20). Once there, they
scatter once on the average so they are borderline as far
as reaching equilibrium.

4 The value of δ and m2
D > 0?

So far we have always given the mass mD a subscript of D
which stands for the Debye screening mass but in all real-
ity, we are uncertain about the sign of the mass square. In
sect. 2 we pointed out that the initial momentum distri-
bution was highly anisotropic, thus some soft gluon modes
were unstable. Looking at the problem only parametrically
as done in the bottom-up picture and also here would not
help us ascertain the sign of m2

D. More dynamical inputs
are necessary. One can compare the momentum distribu-
tion and from the degree of anisotropy deduce whether
m2

D is negative. But the problem is more complicated than
that. For example, from eq. (16) the contribution of the
gluons produced at τ0 to the screening mass square is

m2
D(τ, τ0) ∼

αNs(τ, τ0)

ks(τ0)
∼

Q2
s(Qsτ0)

3δ/5

Qsτ
. (22)

If τ0 ¿ τ then this contribution is clearly negative because
ks(τ0) is so dissimilar to ks(τ). However, the contribution
is small compared to m2

D, which as seen in eq. (17), has the
same expression as eq. (22) except τ0 is τ in this case. On
the other hand, if τ0 ∼ τ then the gluon’s momentum dis-
tribution tends to be isotropic and it is unlikely that m2

D
is negative. The more difficult case is τ0 < τ when one can
no longer be certain when the sizes of the contributions to
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N
s
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bottom-up

Q
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_

Fig. 1. Graphical representation of the matching of the scaling
solution to the bottom-up picture at Qsτ̄ .

m2
D are comparable. It is here that the parameter δ plays

a role since the ratio of the late gluon to the early gluon
contribution goes like (τ/τ0)

3δ/5. Larger value of δ put
more weight on the late-time gluons’ contribution. Better
considerations and calculations are necessary to determine
the value of δ 2.

5 Matching onto bottom-up

The solution(s) that we proposed in eq. (17) would not
be of any value if it did not describe also the equilibrium
phase. In fact at a time when

Qsτ̄ ∼ α−15/2(5−6δ) (23)

our scaling solution becomes identical to the intermediate
stage, α−3/2 < Qsτ < α−5/2, of the bottom-up picture
when the basic quantities in both cases go like

Ns ∼ Q3
s α

10−3δ
2(5−6δ) , ks ∼ Qs α

1/2,

fs ∼ α
5(−1+3δ)
2(5−6δ) , mD ∼ Qs α

3(5−3δ)
4(5−6δ) . (24)

This is true provided 0 < δ < 1/3. A graphical representa-
tion of this is shown in fig. 1. At this time the present solu-
tion should make a transition into the original bottom-up
solution which remains true for the rest of the evolution
as long as the intermediate stage of the bottom-up picture
is not too affected by the initial presence of the instability.

For the case when δ > 1/3, we can see from eq. (24)
that fs approaches unity. In fact in that case at a time
Qsτ1 ∼ α−15/(5+3δ) already fs ∼ 1. Much of the picture
of the final stage of the bottom-up becomes true except
that gluons produced early at time τ0 now play the part

2 Bödeker considered the broadening of the pz by multiple
scattering with the much denser unstable gluon modes instead
of with the hard gluons [15]. In that case he found pz ∼
Qs/(Qsτ)

1/4, which would suggest a value for δ ∼ 5/24 < 1/3
provided that pz takes this parametric form until the moment
when the instability was finally eliminated.



52 The European Physical Journal A

of the hard particles since Ns(τ, τ0) > Nh and ks(τ0) now
functions as the branching momentum kbr in eq. (12)

ks(τ0) ∼ α4T 3τ2. (25)

The transfer of energy is similarly via gluon branching
from these gluons into the bath of soft gluons. Equating
once again the energy flow from these gluons into the ther-
mal bath with temperature T ,

dε

dτ
∼ T 3 dT

dτ
∼

Ns(τ, τ0)

τ
ks(τ0), (26)

using eq. (16) and eq. (25) in eq. (26), one finds

T ∼ Qs α
35−78δ
39δ−10 (Qsτ)

15−36δ
39δ−10 . (27)

At δ = 1/3, this takes the familiar form T ∼ α2Q2
sτ of

a linear increase of T with τ which is characteristic of
the bottom-up picture in [4]. This heating up of the bath
of soft gluons ends when the transfer of energy to the
thermal bath is complete. This occurs when the branching
momentum ks(τ0) in eq. (25) finally reaches Qs and

T 4
∼ Nh(τ). (28)

At this time Qsτ ∼ α−13/5. Substituting this into eq. (27),
one gets

T ∼ Qsα
2/5, (29)

a value that is independent of δ. One sees that independent
of what value δ takes, as long as δ > 1/3, the scaling
solutions match up to the final stage of bottom-up only
at the final time Qsτ ∼ α−13/5.
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